A Mechanistic Model for the Effects of a Novel Drug on Glucose, Glucagon and Insulin Applied to Adaptive Phase II Design

J.Z. Peng,¹ W.S. Denney,² R. Liu,³ K. Tsai,³ K.G. Kowalski,⁴ L. Fang,² M.L. Reitman,⁵ M. Troyer,⁵ S. Engel,⁶ L. Xu,⁷ M.K. Ruddy,⁵ A.S. Stoch,⁵ J. Stone¹ ¹Modeling & Simulation, Merck & Co., Inc., USA; ²Clinical PK/PD, Merck & Co., Inc., USA; ³Early Development Statistics, Merck & Co., Inc., USA; ⁴Ann Arbor Pharmacometrics Group, Inc. (A2PG), USA; ⁵Clinical Pharmacology, Merck & Co., Inc., USA; ⁶Clinical Research, Merck & Co., Inc., USA; ⁷Early Development Statistics, Merck & Co., Inc., USA

🔁 MERCK

Background/Obje

A novel compound (MK) was developed for the treatment of Type 2 diabetes (T2D)

A mechanistic model was developed to describe MK pharmacokinetics and glucagon, insulin and glucose profiles in healthy subjects during a glucagon challenge

The model was adapted for the T2D patient population to assess the need for dose adjustment at the interim analysis of a Phase IIa study

Methods

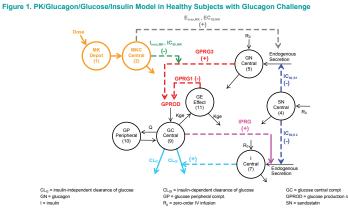
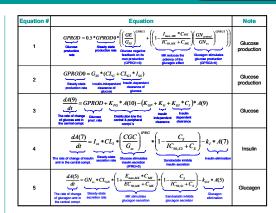
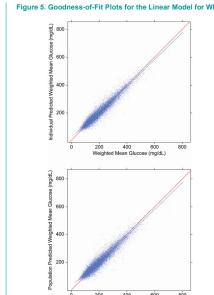

- Single oral doses of MK (0-900 mg) were given to 36 healthy subjects in a Phase I study (Table 1)
 Starting from 3, 12 or 24 hr post dose, glucagon, sandostatin and basal insulin were infused for 2 hrs (glucagon challenge)
- A published model [1] was expanded incorporating drug, glucagon and sandostatin, as shown in Figure 1

Table 1. Study Design (Glucagon Challenge in Healthy Subjects)

Study# (N=36)	MK Dose (mg)&	MK Dose Clock Time	Infusion* Start Time Post MK Dose (h)	Infusion* Start Clock Time
PN001	0	8 am	3	11am
part II	100	8 am	3	11am
(N=12)	300	8 am	3	11am
(14-12)	900	8 am	3	11am 11am
	0	8 pm	12	
PN001	10	8 pm	12	8am
part III	30	8 pm	12	8am
(N=12)	100	8 pm	12	8am
	600	8 pm	12	8am
	0	8 pm	12	
PN001	1	8 pm	12	8am
part IV	3	8 pm	12	8am
(N=12)	20	8 am	24	8am
	40	8 am	24	8am

Poster Number: III-46 PAGE 2011


Athens, Greece

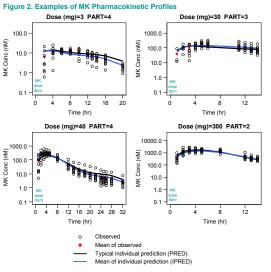

Model key assumptions/descriptions are as follows

- Glucose production rate (GPROD) was modulated by glucose and glucagon levels (Equation 1). Note: the effect of insulin
 on glucose production rate was implicit and covered by the glucose and glucagon effects
- The effects of glucose and glucagon on GPROD were independent of each other (Equation 1) At steady state, glucose and glucagon levels (Gss and GNss) were constant and therefore, GPROD was constant (homeostasis). When there were perturbations, increased glucose levels reduced GPROD, while increased gluca increased GPROD (Equation 1) ed alucagon levels
- The ability of glucagon to increase GPROD was reduced by MK exposure (Imax and IC50). When MK conc. was high enough, the ability of glucagon to increase GPROD was almost completely abolished (*i.e.*, Imax = 0.964) (Equation 1) Clearance of glucose had two pathways: one was insulin-dependent (CLg ix CI) and the other was insulin-independent (CLg). The higher the insulin conc. (CI), the great the insulin-dependent clearance pathway of glucose (Equation 3)
- (vcg), indengine the indent circle (v) the great the insum corporation to participation of participations (vcg) in the great the insum corporation increased (vcg) in the great of the standard of the standar
- MK increased glucagon secretion (Emax and EC50) (Equation 5)
- dostatin inhibited glucagon and insulin secretions (Imax's and IC50s) (Equations 4 & 5)

Result

- The model was then modified using steady-state analysis for patients
 accounting for differences in the PD parameters between healthy sub
 accounting for diffe T2D patients ny subjects and
- Clinical trial simulations (CTS) were subsequently performed to extrapolate drug effects to T2D patients in a Phase IIa study setting where no glucagon challenge was given
- NONMEM and R were used for modeling and NONMEM and SAS were used for CTS

600 'mg/dL)

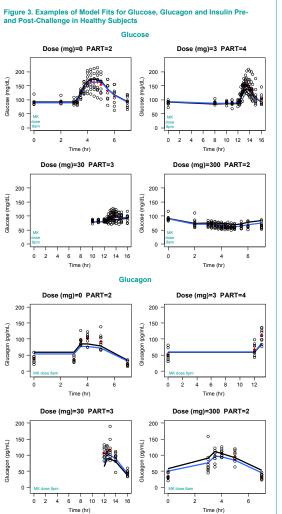

Red line = line of unity. Blue curve = loess smoothed curve

• Table 4 shows the WMG simulation results with 1000 trials and 82 subjects/tria

Table 4. Weighted Mean Glucose Simulation Results

baseline le	evels of glue	cose, glucag	on and insul	in								
 Insulin-dep T2D comp 				stimated to t ed on the in-			Table	4. Weigh	nted Mean Glucose Sin	nulation F	Results	
 Insulin-independent clearance/uptake of glucose is preserved 									o:	Do	se Chan	qe*
 All other parameters were fixed based on estimates from the healthy subject model 							Dose, Time	MK Dose (mg)	Simulated LS-mean WMG decrease (mg/dL)	Decrease	Keep	Increase
CTS was performed to estimate drug effects in T2D patients in a Phase Ila study setting								5	27.23	0	68.8	31.2
								6	30.26	0	89.1	10.9
 Because the model PD output was fasting plasma glucose (FPG), but 								7	33.12	0.9	96	3.1
weighted mean glucose (WMG) was the PD endpoint for the Phase IIa study, a linear model between FPG and WMG was developed using the								8	35.04	2.6	96.9	0.5
data from the					a using the		QD, AM	9	37.11	8.4	91.6	0
• Table 3 show	Table 3 shows the parameter estimates and Figure 5 shows the							10	39.35	20.5	79.5	0
goodness-of-fit								11	40.77	30.9	69.1	0
• The same model structure to correlate WMG to FPG was used to fit the								12	42.37	44.2	55.8	0
data from the similar param			n T2D, and y	ielded			14	45.15	66.7	33.3	0	
Similar param	eter estima	ies (results r	lot showin)					3	24.79	0	44.3	55.7
								4	29.32	0.1	82.7	17.2
able 2. Deven	otor Estin	ataa fay th	a Lincor M	adal hatura	en EDC			5	33.84	1.4	96.3	2.3
Table 3. Parameter Estimates for the Linear Model between FPG and WMG								6	37.04	8	91.6	0.4
							QD, PM	7	40.23	25.4	74.6	0
$\label{eq:wmg} \begin{array}{ll} wmg = & a^{*}[pre-breakfast] + b^{*}[pre-lunch] + c^{*}[pre-supper] + \\ d^{*}[bedtime] + intercept + \eta_{AN} + \epsilon \end{array}$								8	42.95	49.5	50.5	0
								9	45.36	67.8	32.2	0
								10	47.57	83.9	16.1	0
	s	olution for Fi	xed Effects					12	51.36	97	3	0
		Standard						13	73.06	-	100	0
Effect	Estimate	Error	DF	t Value	Pr > t			14	74.14	-	100	0
ntercept	21.979	0.461	26139	47.6	<.0001			16	76.57	-	100	0
Pre-breakfast	0.262	0.0018	26139	143.6	<.0001			17	77.65	-	100	0
							BID	18	78.66	-	100	0
Pre-lunch	0.190	0.0017	26139	110.9	<.0001			20	80.29	-	100	0
Pre-supper	0.271	0.0016	26139	166.6	<.0001			22	81.73	-	100	0
Bedtime	0.238	0.0016	26139	151.0	<.0001			25	83.73	-	100	0
SD(η _{AN})	9.28							30	85.77 rules were that if the 80% post-hoc predict	-	100	0

Examples of MK pharmacokinetic profiles are shown in Figure 2



• The PD model parameter estimates are shown in Table 2

- The drug effect was modeled by using an inhibitory Emax model (Imax=0.96 and IC50=13.7 nM) on the ability of glucagon to increase GPROD
 In addition, an Emax model (Emax=0.79 and EC50=575 nM) to increase glucagon secretion by the drug was used to account for the increased glucagon concentrations pre-challenge (via compensatory feedback)

Table 2. Model Parameters for Glucose, Glucagon and Insulin in Healthy

Parameter (unit)	Description	Parameter Estimate	IIV (%CV)
	Glucose		
GSS (mg/dL)	Glucose SS concentration	91.9	6.1 FIXED
CLG (dL/hr)	Glucose insulin-independent clearance	0.613	N.E.
CLGI (dL/hr/mcIU/mL)	Glucose insulin-dependent clearance	0.135	N.E.
QG (dL/hr)	Glucose intercompartmental clearance	0.269	N.E.
VGC (dL)	Glucose central compartment volume	1.13	28.8 FIXED
VGP (dL)	Glucose peripheral compartment volume	0.471	N.E.
KGE (1/hr)	Glucose ke0 for glucose regulation	0.0828	N.E.
lmax,MK	Imax of MKs inhibit effect on glucagon stimulation on glucose production	0.964	N.E.
IC50,MK (nM)	IC50 of MKs inhibit effect on glucagon stimulation on glucose production	13.7	78.2
GPRG1	Glucose negative feedback effect on glucose production	-2.16	N.E.
GPRG3	Glucagon stimulatory effect on glucose production	4.18	N.E.
RESG (%)	Glucose residual %CV	7.52	
	Insulin		
ISS (mcIU/mL)	Insulin SS concentration	4.13	33.3 FIXED
CLI (L/kg/hr)	Insulin clearance	1.4	26.3 FIXED
VI (L/kg)	Insulin volume	0.317	N.E.
IPRG	Glucose stimulation effect on insulin secretion	2.27	N.E.
IC50,S2 (ng/L)	Sandostatin IC50 on insulin secretion	0.944	N.E.
RESI (mcIU/mL)	Insulin residual SD	1.38	
	Glucagon		
GNSS (pg/mL)	Glucagon SS concentration	58.5	10.6 FIXED
CLGN (L/kg/hr)	Glucagon clearance	3.22	18.4 FIXED
VGN (L/kg)	Glucagon volume	1.44	N.E.
Emax,MK	Emax of MK's stimulatory effect on glucagon secretion	0.788 FIXED	N.E.
EC50,MK (nM)	EC50 of MK's stimulatory effect on glucagon secretion	575 FIXED	N.E.
IC50,S1 (ng/L)	Sandostatin IC50 on glucagon secretion	5.52	N.E.
RESGN (%)	Glucagon residual %CV	30.5	

The examples of model fits for glucose, glucagon and insulin pre- and post-challenge in healthy subjects are shown in Figure 3

- - This model was then extrapolated to T2D patients after accounting healthy subjects and T2D PD para differences in the P patients (Figure 4)

Figure 4. PK/Glucagon/Glucose/Insulin Model in T2D without agon Challenge

₹ (+)

GC entra (9)

PK parameters: same between healthy and T2D

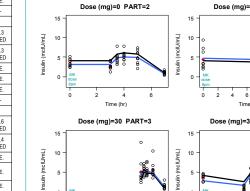
No glucagon challenge; only glucagon baseline conc. used in the

Baseline glucose level was 183.8 mg/dL for T2D vs. 91.9 mg/dL for

Self-regulation of glucose production in T2D was completely compromised (note that this assumption is not completely physiological)

healthy subjects (*i.e.*, doubled). There was interplay betwee baseline levels of glucose, glucagon and insulin

(-)


Emax.MK, EC50.MI

(+)

Secretion

GN Central (5)

Centra (7)

Dose (mg)=3 PART=4	d*[bedtime] + intercept + η_{AN} + ϵ								
		Solution for Fixed Effects							
	Effect	Estimate	Standard Error	DF					
8 0	Intercept	21.979	0.461	26139					
MK dose 8pm	Pre-breakfast	0.262	0.0018	26139					
0 2 4 6 8 10 12	Pre-lunch	0.190	0.0017	26139					
Time (hr)	Pre-supper	0.271	0.0016	26139					
Dose (mg)=300 PART=2	Bedtime	0.238	0.0016	26139					
	SD(η _{AN})	9.28							
_	SD(()	22.44							
	All glucose conce	ntrations wer	e in mg/dL.						

CL_G = insulin GN = glucag I = insulin

To extrapolate to T2D

For QU obsets, the dose rules where that it the 00% post-hoc prediction interval or the study mean reduction in WMG was <30 mg/dL, increase the dose, and if it was >40 mg/dL, decrease the dose. For BID there was only an increase rule if the 80% post-hoc prediction interval was <80 mg/dL.</p>

According to simulations

- The current doses (highlighted in green) were near optimal
- The AM dose would likely be best adjusted to either 7 or 8 mg
- The PM dose would likely be best adjusted to 5 mg, and
- The BID dose would not require increase

[1] Silber HE, Jauslin PM, Frey N, Gieschke R, Simonsson USH, Karlsson MO. An integrated model for glucose and insulin regulation in healthy volunteers and Type 2 diabetic patients following intravenous glucose provocations. Journal of Clinical Pharmacology, 2007;47:1159-474. follov 1171

[2] The Diabetes Control and Complications Trial (DCCT) was a clinical study conducted from 1983 to 1993 funded by the National Institute of Diabetes and Digestive and Kidney Diseases with 1441 Type 1 diabetic patients treated with insulin.

		8	-	ŝ	Insulin (r	5 - 0 -	MK dose 8am	_	_	18
6	8 10	12	14	16			0		,	
-	e (hr)						0		T	'ime (h
0	Obs	erved	1							
•	Mea	n of c	obse	rved						

Insulin

- Typical individual prediction (PRED) Mean of individual prediction (IPRED)

- A PK/PD model was developed to adequately capture the interplay between glucose, glucagon and insulin in healthy subjects or T2D patients, with or without glucagon challenge
- A linear model to correlate FPG to WMG was developed and provided robust predictions to assist with the dose adjustment for the interim analysis